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Onboard dynamic-object detection and tracking for
autonomous robot navigation with RGB-D camera

Zhefan Xu*, Xiaoyang Zhan*, Yumeng Xiu, Christopher Suzuki, and Kenji Shimada

Abstract— Deploying autonomous robots in crowded indoor
environments usually requires them to have accurate dynamic
obstacle perception. Although plenty of previous works in
the autonomous driving field have investigated the 3D object
detection problem, the usage of dense point clouds from a heavy
LiDAR and their high computation cost for learning-based data
processing make those methods not applicable to lightweight
robots, such as vision-based UAVs with small onboard com-
puters. To address this issue, we propose a lightweight 3D
dynamic obstacle detection and tracking (DODT) method based
on an RGB-D camera. Our method adopts a novel ensemble
detection strategy, combining multiple computationally efficient
but low-accuracy detectors to achieve real-time high-accuracy
obstacle detection. Besides, we introduce a new feature-based
data association method to prevent mismatches and use the
Kalman filter with the constant acceleration model to track
detected obstacles. In addition, our system includes an optional
and auxiliary learning-based module to enhance the obstacle
detection range and dynamic obstacle identification. The users
can determine whether or not to run this module based on
the available computation resources. The proposed method is
implemented in a lightweight quadcopter, and the experiments
prove that the algorithm can make the robot detect dynamic
obstacles and navigate dynamic environments safely.

I. INTRODUCTION

Lightweight autonomous robots are widely used in various
indoor applications. The environments of those applications
usually involve humans, vehicles, and other robots, which
can be highly dynamic and unpredictable. Under such cir-
cumstances, the robots must perceive dynamic obstacles
accurately in real time for safe navigation. However, many
indoor robots, such as lightweight UAVs, are only equipped
with a computation-limited onboard computer and an RGB-
D camera, making the GPU-demanding deep-learning-based
methods from the autonomous driving field unsuitable. As a
result, developing an onboard dynamic obstacle detection and
tracking method based on an RGB-D camera becomes crucial
for autonomous robot applications in dynamic environments.

There are mainly three challenges in onboard 3D dy-
namic obstacle detection using an RGB-D camera. First,
the onboard computation resources are limited in lightweight
indoor robots, making GPU-demanding learning-based meth-
ods [1][2] not applicable. Second, most lightweight depth
cameras’ range and field of view (FOV) are very narrow,
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Fig. 1. The onboard dynamic obstacle detection results from the proposed
DODT algorithm. (a) The camera RGB view. (b) An example of an
autonomous robot with an RGB-D camera. (¢) The onboard 3D dynamic
obstacle detection results shown as blue bounding boxes with point clouds.

which makes obstacles either too close or too far not de-
tectable. For example, the ideal depth range of the popular In-
tel RealSense D435i depth camera is from 0.3m to 3.0m. This
camera limitation makes some previous works [3][4] only
capable of tracking obstacles in the short range. Third, the
noises from the depth value estimation of the camera are not
negligible, especially for those noise-sensitive non-learning
methods [5][6]. The camera noises can make the detection
algorithm not only estimate obstacle states inaccurately but
also produce high-frequency false-positive and false-negative
results, leading to confusion for obstacle avoidance planners.

To solve these issues, this paper presents an onboard 3D
dynamic obstacle detection and tracking (DODT) method
based on an RGB-D camera. We propose a novel ensemble
detection strategy combining multiple computationally effi-
cient but low-accuracy detectors to obtain fast, accurate ob-
stacle detection results. Besides, the proposed method adopts
our feature-based data association and uses the constant-
acceleration Kalman filter to track each obstacle. Then,
we use both point cloud and velocity criteria to identify
dynamic obstacles. Finally, the system includes an optional
and auxiliary learning-based module to enhance the detection
range and dynamic obstacle identification when the robot’s
computation resources are enough. Fig. [T] shows an example
of detection results. The main contributions of this work are:

« Efficient Ensemble Detection: Our algorithm runs



multiple computationally efficient and low-accuracy de-
tectors in parallel and adopts an ensemble detection
strategy to obtain accurate results with high efficiency.

o Feature-based Association and Tracking: Our
feature-based data association method prevents tracking
mismatches and use the constant-acceleration Kalman
filter for better obstacle state estimation.

o Auxiliary Learning-based Detection Module: Our
optional learning-based module is applied to improve
the detection range and dynamic obstacle identification.

II. RELATED WORK

Obstacle detection and tracking algorithms are designed
based on robot sensors and data representations. The choice
of sensors can vary from LiDARs [7][8][9][10], event cam-
eras [11][12], and RGB-D cameras [3][4][6] based on the
robot platforms. Among them, the RGB-D camera is one of
the most popular sensors for indoor robots, and there are
mainly two conventional ways of using the RGB-D camera:

Image-based methods: Most of this category of methods
utilize the depth image for 3D obstacle detection. In [13],
they use the depth image to generate the U-depth map
and V-depth map to estimate the states of obstacles and
demonstrate the safe navigation ability with static obstacles.
Later, Lin et al. [14] adopt a similar U-depth map to detect
and track obstacles and represent them as 3D ellipsoids. To
further improve the obstacle dimension estimation accuracy,
the restricted V-depth map is applied in [15]. In [6], the
dynamic obstacles detected from the depth and U-depth
map are identified by the estimated velocities. The dynamic
obstacle detection results are combined with the occupancy
map for navigating dynamic environments. Unlike previous
depth image-based methods, Lu et al. [16] apply the YOLO
detector to avoid fast and small dynamic obstacles. Sun et
al. [17] apply image difference to detect all dynamic points
from RGB images. Logoglu et al. [18] combine the 3-image-
difference and epipolar constraints to determine dynamic
obstacles. Scene flow, an extension of the optical flow, is
applied in [19] [20] to detect the velocity of each pixel
and identify dynamic points. Some other methods detect
and segment dynamic obstacles in the 2D image planes for
improving SLAM robustness. In [21][22][23][24], their ap-
proaches focus on removing dynamic obstacles in the image
to reduce the state estimation errors. Qiu et al. [25] detect
the pedestrian skeletons to improve the SLAM optimization.

Point cloud-based methods: Unlike the image-based
methods, the point cloud-based methods directly detect 3D
obstacles using the point cloud geometry information. In
[3], the point cloud clustering method is combined with the
YOLO detector for human detection. Following a similar
clustering detection idea, Wang et al. [4] show indoor dy-
namic obstacle avoidance using a quadcopter. To improve
the obstacle tracking robustness, Chen et al. [5] propose to
use the point cloud feature vectors and object track points
to find correct object matches and estimate their states.
In [26], a KD-Tree map is built directly from the LiDAR
point cloud for dynamic obstacle avoidance. Min et al.

[27] represent dynamic obstacles in the dynamic occupancy
map and leverage kernel inference to reduce computation.
Similarly, in [28], a dual-structure particle-based dynamic
occupancy map is used to represent dynamic environments
and classify obstacle particles into static and dynamic.

However, both image-based methods and point cloud-
based methods can inevitably have misdetection due to noises
from the images, point clouds, and complicated environment
structures. Realizing that different detectors have different
error sources for misdetection, we propose a novel ensem-
ble method to overcome the shortcomings of each simple
detector. To balance computation and performance, we also
suggest using the learning-based method as an optional and
auxiliary module instead of a required end-to-end obstacle
detection and tracking tool, making our method applicable
to robots with a wide range of computational resources.

III. METHODOLOGY
A. System Overview

There are mainly three modules in the proposed system
framework: the detection module, the tracking module, and
the identification module, as shown in Fig. E} The detection
module is divided into a main non-learning module and
an auxiliary learning-based module. The non-learning part
takes the depth image and ensembles two non-learning
detectors to detect generic obstacles, while the learning-
based module uses the aligned RGB-D image to directly
detect dynamic obstacles and ensemble the results with the
non-learning detection module. The details of each detector
will be discussed in Sec. with the ensemble detection
described in Sec. Then, the refined 3D bounding boxes
of obstacles will be used in the tracking module (Sec.
D) to find the correct history matches and use the histories
to estimate the obstacle states. With the obstacle states and
tracking histories, the identification module (Sec. [[II-E) is
applied to classify obstacles as static and dynamic. Finally,
the system outputs dynamic obstacles’ bounding boxes with
their point clouds, and the dynamic obstacle regions are
cleaned in the static map for navigation.

B. 3D-Obstacle Detectors

This section introduces three computationally efficient but
low-accuracy 3D obstacle detectors: the U-depth, the DB-
SCAN, and the YOLO-MAD detector. Note that all detection
results are represented as axis-aligned bounding boxes.

U-depth Detector: The U-depth detector for obstacle
detection is mentioned in the previous works [13][14][6].
Overall, the detector takes the depth image to generate 3D
bounding boxes of static and dynamic obstacles’ bounding
boxes. Fig. [3| visualizes sample detection results. There are
three steps in the U-depth detector: (1) the U-depth map
generation, (2) the line grouping on U-depth, and (3) the
depth continuity search on the original depth image.

The U-depth map can be intuitively viewed as the top-
down view from the camera. It has the same width as the
original depth image, and its vertical axis from top to bottom
indicates the increasing distance to the camera. When we get
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The proposed dynamic obstacle detection and tracking system (DODT) framework. The input data are the RGB-D images. The non-learning

detection module first uses the depth image to detect generic obstacles. Then, the tracking module is applied to track and estimate the obstacles states.
With the identification module, the dynamic obstacles are identified from all detected obstacles. Finally, the output results show the dynamic obstacles’
bounding boxes. The dynamic obstacle regions are cleaned in the static occupancy map. The optional learning-based detection module, presented in the
blue dotted line, uses color and depth images to detect dynamic obstacles, enhancing the detection range and dynamic obstacle identification.
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Fig. 3. Illustration of the U-depth detector. (a) The camera RGB view. (b)
The detected 3D bounding box with the obstacle point cloud. (¢) The 2D
detection on the depth map. (d) The 2D detection on the U-depth map.

a depth image, we can compute the U-depth map using the
column depth value histogram. Fig. Bt and Fig. B{d show a
depth image and U-depth map pair. Then, we can perform
the line grouping method on the generated U-depth map to
get the 2D bounding box of the obstacle of width w; and
thickness t; shown in Fig. B (note that i indicates the image
plane). With the obstacle width w;, we do the depth value
continuity check on the original depth image to get the height
h; of the obstacle shown in Fig. Bk. After having both 2D
bounding boxes in the U-depth map and the original depth
image, we can triangulate 3D points into the camera frame
and perform coordinate transform to get the obstacle position
and dimension of the world/map coordinate frame (Fig. [3p).
DBSCAN Detector: Unlike the image-based detector, the
DBSCAN detector uses point cloud data to detect obstacles.
DBSCAN is an unsupervised machine-learning algorithm
for clustering which can automatically determine the cluster
number. The illustration of the DBSCAN detector is shown
in Fig. ] When the robot encounters obstacles, the raw point
cloud data can be triangulated from the depth image as shown
in Fig. fb. Note that because of the sensor, the point cloud
data can be noisy on the obstacle boundaries. So, we apply
the voxel filter proposed in [3] to remove the noise of the
point cloud and then perform DBSCAN clustering to get
obstacles’ bounding boxes (Fig. ). Similar to the U-depth
detector, the DBSCAN detector does not need a training
dataset and only requires a few computation resources.

YOLO-MAD Detector: The previously mentioned de-
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Fig. 4. Tlustration of the DBSCAN detector. (a) The robot encounters
obstacles in a corridor. (b) The raw point cloud data from the RGB-D camera
are unstructured and noisy. (c) The DBSCAN detector takes the filtered point
cloud and performs clustering to get obstacles’ bounding boxes.

tectors rely on geometric structures of either depth images
or point clouds. As a result, they cannot identify the type
of obstacles (i.e., static or dynamic) and might even fail
when the obstacles are far from the camera. To overcome
these limitations, we introduce our 3D YOLO-MAD detector
based on the 2D YOLOFastestDelﬂ which can run real-time
at an onboard CPU such as Intel NUC. The illustration of
the YOLO-MAD detector is shown in Fig. [5] The detector
first detects the 2D bounding box of each obstacle on
the RGB image and finds the corresponding region on the
aligned depth image. To find the depth and thickness of the
2D bounding box, we first calculate the median absolute
deviation (MAD) based on the median depth value d in the
bounding box region Rpex:

MAD = median(|d; — d|), d; € depth(Rpox), (1)

where d; is the depth value of ith pixel in the bounding box
region Ryox. Then, we can search the minimum depth dp;,
and maximum depth dp,, in the MAD range Syvap:

Svap = {dild —n-MAD < d; < d+n-MAD}, (2)

where n is a user-defined parameter. The obstacle’s thickness
tmap can be calculated based on the minimum and maximum
depth values. The MAD range Suap can help filter the outlier
depth values in the bounding box region from the background
and the sensor noises. Finally, we can triangulate the points
from the depth image at the median depth plane with the

Thttps://github.com/dog-qiugiu/FastestDet
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Fig. 5. Illustration of the YOLO-MAD detector. The RGB image is used to
get the 2D detection result, and then the bounding box on the depth image
is obtained. With the 2D result on the depth image, the 3D bounding box
is calculated by the proposed median absolute deviation (MAD) method.

thickness to get the 3D obstacle’s bounding box. Since this
learning-based detector can still be computationally heavy
for some extremely low-power onboard computers, we treat
it as an optional and auxiliary module in our framework.

C. Ensemble Detection

This section introduces our proposed ensemble detection
method to obtain refined obstacles’ bounding boxes. In our
framework, three detectors run in parallel and individually
detect obstacles’ bounding boxes. Since the previously men-
tioned detectors are designed to compensate for the detection
accuracy for high-speed performance, they are all sensitive
to different environments and sensor noises, leading to false
positives and inaccurate obstacle dimension estimation. So,
the intuition of the ensemble detection is to combine the
detection results of different detectors and find their “mutual
agreements” of detection results for reducing the noise
effects. This technique can significantly improve detection
robustness and accuracy with environment and sensor noises.

The proposed ensemble detection algorithm follows a
pairwise manner presented in Alg. [[L When we obtain two
sources of detection results, we go through each bounding
box by from one detector’s results (Line E[) For the bounding
box byqj, the algorithm finds the bounding box bpaecn1 With
the highest intersection-over-union (IOU) score from the
other detection bounding boxes (Line [5). Following the same
way, the bounding box byacny is obtained by finding the
highest IOU match of by, in the first detection bounding
boxes (Line [6). Through this process, we want to find the
bounding boxes that are detected by both detectors. Then,
we need to ensure that the IOU score of their matched
bounding boxes exceeds the predefined threshold and that
their matched bounding boxes have the highest IOU score
to each other (Line @) Finally, we fuse two bounding
boxes into a new ensembled bounding box (Lines OHI0). We
adopt a conservative method for fusing bounding boxes: the
new ensembled bounding box takes the maximum values in
dimensions and the average value in positions. In our system
framework (Fig. [2), we first ensemble detection results from
the U-depth and DBSCAN detectors and then combine the
YOLO-MAD results if the learning-based module is running.

D. Data Association and Tracking

This section describes the data association and tracking
module for matching obstacles temporally and estimating

Algorithm 1: Ensemble Detection Algorithm

Bep, 0; > ensembled bounding boxes
Ba1 < getDetBBox1() ; > detectorl results
Bao < getDetBBox2() ; > detector2 results
for bdl in Bdl do
Sioula Bratch1 ﬁndBestIOUMatch(bdl, Bdg);
SiouZa brmatch2 ﬁndBestIOUMatch(bmatchl N Bdl );
Cinatch < Dmaien2 18 bar;
if Siou1 > Sir and Siour > Sy and Crpeen then
ben < fuseBBoxes(by;, bmatchi );
Be.,.push_back(be,);
1 return 5,,;
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their states. Overall, the proposed module first applies the
feature-based data association method to match the detected
obstacles at the current time ¢,, with the obstacles at the pre-
vious time %,,_1. Then, it applies the Kalman filter with the
constant-acceleration motion model to estimate the obstacles’
states and add them to the estimation histories.

Feature-based Data Association: The detected obstacles
at the current time ¢,, are associated with the obstacles at
the previous time t,_; using the feature comparison. The
feature vector of the obstacle O; is defined as:

feat(0;) = [pos(i), dim(i),len(q), std(i)], 3)

where pos(i) is the obstacle’s center position, dim(z) is the
obstacle’s dimension in x, y and z direction, len(i) is the
obstacle’s point cloud size, and std(i) is the obstacle’s point
cloud standard deviation. Then, we perform normalization
for the feature vector to reduce the effects from the different
dimensions. After that, the similarity score between obstacles
O; and Oj is calculated using the following equation:

sim(0;, 0;) = eap(—||feat(0;) — feat(0;))I3), 4

where we take the exponential of the negative L2 norm of
the feature difference. With the similarity scores, the obstacle
O!" at the current time ¢,, can be matched with the obstacle
O%"‘l at the previous time ¢,,_; with the highest similarity
score simmax. Note that instead of directly using the previous
obstacle’s feature, we apply the linear propagation to get the
predicted obstacle’s position and replace the previous obsta-
cle’s position with the predicted position in the feature vector.
In addition, we also need to ensure that the highest similarity
score is higher than a predefined threshold (simmax > Tsim)
to prevent incorrect associations.

The proposed feature-based data association method can
overcome the drawback of traditional center-distance-based
association, as shown in Fig. @ In Fig. @a and b, a scenario is
presented where a person approaches the wall with the point
clouds of all obstacles shown in Fig. [6c. Since the center of
the wall (Point C) is closer to the person’s position at the
current time to (Point B) than the person’s position at the
previous time t; (Point A), a center-distance-based tracking
will associate the person with the wall. On the contrary, if
the proposed feature-based association method is applied, the
person and wall will not be matched together because of the
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Fig. 6. Ilustration of the issue with the center-distance-based data
association method. (a) The RGB image at time ¢1. (b) The RGB image at
time t2. (c) The center-distance-based data association method might fail
by incorrectly associating the current detected person with the wall.

obvious differences in the obstacles’ dimensions, velocities,
point cloud sizes, and standard deviations. So, the detected
person at the current time ¢o will be correctly associated with
the person at the previous time ;.

Constant-Acceleration Kalman Filter: The states of each
obstacle are estimated by the Kalman filter with a constant-
acceleration motion model. Unlike the previous work [4] [6],
where the velocities of obstacles are assumed to be constant,
our method allows the obstacles’ velocities to change without
increasing the complexity of the motion model too much. We
will discuss all quantities in global map frame for simplicity.
The obstacle states are defined as X = [x,y,, 7, %, 4]7,
including the position, the velocity, and the acceleration in
x and y directions. The measurement vector is the same as
the obstacle state vector. To calculate the measurement of
the velocity vector V; and acceleration vector A; at time ¢,
we adopt the following equations:
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where 0t is the time difference. Note that we take the
data from several time differences §t to calculate smoother
observations. In this way, the system model is described by:

V. » Ay (&)

Xijp—1 = AXy 1 + Bup 1 + Q, (6)

where A is the state transition matrix, () is the covariance
of the motion model noise, u is the control input, which is
zero in this case. Since the acceleration model is assumed,
the state transition matrix can be calculated by:
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and the system measurement is defined as:
Z, = HX, +R, (8)
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Fig. 7. Illustration of removing the invalid points using the field of view
(FOV) criteria. (a) The analysis of the observed obstacle’s point cloud at
different time. (b) The robot detecting a partially visible obstacle.

where the measurement matrix H is an identity matrix, and
R is the covariance of measurement noise.

E. Dynamic Obstacle Identification

This section describes how to identify the status of an
obstacle (dynamic or static). By default, any quantities
defined in the following are at the current time ¢,. In the
first step, all the bounding boxes of obstacles with the center
velocity Vi enter less than a threshold T,.; will be classified
as static. After that, the module takes all valid points of an
obstacle’s point cloud to vote for its status. In this step, every
point at the current time ¢,, is matched with its corresponding
point at the time ¢,,_j by the nearest neighbor search. After
determining the correspondence, the velocity of each point
V! .. is calculated. Then, a point will vote for the obstacle as
dynamic if its velocity exceeds a predefined threshold T, ,¢c.
If the ratio of dynamic votes N, over the number of valid
points Nyqiiq is higher than another threshold 7.4, the
obstacle will be identified as a dynamic obstacle:

Nvote

valid

> Tratio~ (9)

Before the dynamic voting process, it is necessary to drop
the invalid points from the point cloud. First, if any point
p;,; with the point cloud index ¢ in obstacle j has an invalid
velocity V¢ .., it will be removed from the dynamic voting
process. The valid velocity should satisfy the condition:

angle(v;i)otev Vgenter) < E (10)

2 )
where we ensure that points with incorrect velocity esti-
mations are removed. Second, if any point p; ; at time ¢,
is invisible at time t¢,,_j, it will also be removed from
voting shown in Fig. [7] Fig. [/(b) shows a scenario where
a robot approaches a partially visible static obstacle. At the
previous time ¢;, only red points are visible; the detected
center of the obstacle is the red star. At the current time
to, the whole box is visible, and the center of the obstacle
shifts a lot. In this case, the obstacle will have a large
center velocity Vi enter and voting velocity V.. due to
incorrect points correspondence. Our method drops the newly
observed points from the voting and identifies the obstacle
as static. Finally, when the YOLO-MAD Detector is applied,



Fig. 8. Illustration of using the OptiTrack motion capture system to estimate
the error of the proposed dynamic obstacle detection and tracking method.

the classification results will be used for dynamic obstacle
identification, skipping all the processes mentioned above.

IV. RESULT AND DISCUSSION

A. Implementation Details

To evaluate the performance of the proposed method,
we conduct experiments in dynamic environments. The al-
gorithm is implemented based on C++ and ROS, running
on two customized autonomous quadcopters with the Intel
NUC and NVIDIA Jetson Xaiver NX onboard computer,
respectively. We use the RGB-D images from Intel RealSense
D435i camera as the system inputs, which provides 640 x
480 pixels images with 87° by 58° field of view. The visual-
inertial odometry (VIO) algorithm [29] is applied for the
robot state estimation and to transform the detection results
from the camera to the world frame. The autonomous quad-
copters use the PX4-based flight controller for our flight tests.
All the computations, including dynamic obstacle detection
and tracking, mapping, planning and state estimation, are
performed real-time on the robots’ onboard computers.

B. Performance Benchmarking

To quantitatively analyze the proposed algorithm’s perfor-
mance, we conduct comparison experiments with the state-
of-the-art dynamic obstacle detection and tracking methods
in the UAV platform [14][4][6]. The comparison results
of the average position and velocity errors are shown in
Table [l The experiment’s position and velocity errors are
measured by comparing the ground truth measurement from
the OptiTrack motion capture system shown in Fig. [8] Table[[]
shows that our DODT method has the lowest position errors
among all the methods, and our velocity error is the second
least, comparable to Method III [6]. From our observations,
we notice that the image-based method [14] is very sensi-
tive to background noises, leading to many false positive
defections in the backgrounds. Similarly, the point cloud-
based method [4] tends to generate false-positive detection
around the obstacles’ edges, the places with the most point
cloud noises. Although methods [4][6] apply the dynamic
obstacle identification technique to filter the false-positive
detection, their identification requires a long time horizon
which causes latency in the dynamic obstacle detection.
Since our algorithm applies the ensemble detection with
the learning-based module, it can reduce the false-positive
detection and improve the dynamic obstacle identification

TABLE I
BENCHMARKING OF DETECTION AND TRACKING ERRORS.

Method Position Error (m) | Velocity Error (m/s)
Method T [14] 0.28 0.47
Method I [4] 0.18 0.29
Method III [6] 0.19 0.21
DODT (Ours) 0.11 0.23
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Fig. 9. [Illustration of enhancing detection range by the auxiliary learning-
based module. The red line measures the maximum ideal range to produce
dense point cloud data for the DBSCAN and U-depth detectors to detect
obstacles. The yellow line indicates the increased detection distance.

speed by using the “mutual agreements” (IOU criteria) and
the classification from the learning-based detector.

The result illustration of enhancing detection range by
the auxiliary learning-based module is visualized in Fig. [0}
In Fig. Op, we label our depth camera’s dense point cloud
distance (around 3m). Since both non-learning detectors,
the U-depth and the DBSCAN detectors, require geometric
information from either depth image or point cloud, detecting
obstacles using the non-learning detectors outside the dense
point cloud region can fail. On the contrary, the learning-
based module can use the color image to detect obstacles
(Fig. Ph) even though the obstacle is in a sparse point
cloud region. Fig. [Op shows that our YOLO-MAD detector
can successfully detect the dynamic obstacle (shown as the
purple bounding box) in the sparse point cloud region with
the increasing detection distance labeled as the yellow line.

C. Runtime Analysis

The runtime of the entire system is shown in Table([[T] Note
that we use the Intel NUC onboard to measure the runtime,
and the 3D obstacle detection runtime includes the auxiliary
learning-based module. Overall, one can see that the total
runtime is 19.12ms which indicates our algorithm can run
over 50Hz. The 3D obstacle detection spends the most time
among all the modules in our framework. From the detector
runtime of the Intel NUC (shown as the blue bar) in Fig.
[T0l we can see that the YOLO-MAD detector takes 14.3ms
in an iteration which is 75.7% of the total detector runtime.
Similarly, for the NVIDIA Xavier NX onboard computer, the
YOLO-MAD takes 59.5% of the entire detector runtime. As
we suggest in Sec. the YOLO-MAD detector should
be used as an optional and auxiliary module when the com-
putational resources are enough for real-time applications.
The experiments show that if the user decides not to use
the learning-based module, the detection frame rate on Intel
NUC and Xaiver NX can increase from around 50Hz and
25Hz to around 210Hz and 60Hz, respectively.



TABLE I
THE RUNTIME OF EACH MODULE OF THE PROPOSED SYSTEM.

System Modules Time (ms)  Portion (%)
3D Obstacle Detection 18.90 98.85%
Data Association and Tracking 0.10 0.52%
Dynamic Obstacle Identification 0.12 0.63%
System Total Runtime 19.12 100.00%
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Fig. 10. The runtime comparison of the U-depth, the DBSCAN, and the
YOLO-MAD detector on the Intel NUC and the NVIDIA Xavier NX.

D. Physical Experiments

To verify the proposed algorithm’s performance in robot
navigation, we conduct handheld experiments using the robot
camera and do the autonomous navigation tests with the
trajectory planner [30][31] in dynamic environments.

Handheld Experiments: The handheld experiments are
conducted by moving the robot’s camera in dynamic environ-
ments to simulate the navigation trajectories. Fig. [I2] shows
the example experiments with results. The first example
experiment (Fig. [[2p-b) shows persons walking in circles
in front of the camera. One can see that our proposed
algorithm can detect multiple persons in the camera’s FOV
and track the history trajectories (shown as green curves) of
dynamic obstacles. Note that we only visualized the past 3
seconds’ history trajectories. The second example experiment
(Fig. [[2Hd-e) lets the camera follow a walking person. The
timestamp t; denotes the time starting from when the first
time the dynamic obstacle is detected. The detection results
show that our method can allow the robot to perform long-
distance detection and tracking of the dynamic obstacle.

Navigation Experiments: We prepare the dynamic envi-
ronment consisting of both static and dynamic obstacles to
test the autonomous robot’s navigation ability. The experi-
ment is shown in Fig. [TI] Note that the static occupancy
voxel map is also used for static obstacle avoidance. In the
experiment, the robot is required to navigate to the given
goal position, which is 15 meters from the start location.
During the navigation period, two persons (only one shown
in the figure) are walking randomly as dynamic obstacles,
and the robot must avoid them safely. The figure shows that
the walking person is successfully detected as a dynamic
obstacle, and the robot can efficiently modify its planned
trajectory based on the dynamic obstacle’s states.

V. CONCLUSION AND FUTURE WORK

This paper presents our onboard 3D dynamic obstacle
detection and tracking (DODT) algorithm for autonomous
robots navigating dynamic environments. Our method adopts

Rviz

Dynamic Obstacle ,’ Voxel Map (static) g Planned Trajectory

=> Camera Pose

Fig. 11. Autonomous robot navigation in dynamic environments using the
proposed algorithm. The onboard obstacle detection results (blue bounding
boxes) can help the robot modify its planned path to avoid obstacles safely.

an ensemble detection strategy to obtain refined detection
results by combing multiple computationally efficient but
low-accuracy detectors. In addition, the proposed feature-
based data association method prevents incorrect matches of
obstacles with detected histories. The constant-acceleration
Kalman filter is used to estimate the states of obstacles.
Besides, with the obstacles’ state estimations, our dynamic
obstacle identification module can classify the detected ob-
stacles into static and dynamic. Finally, we propose using the
learning-based method as an optional and auxiliary module
to enhance the detection range and dynamic obstacle identi-
fication. Our handheld and autonomous flight experiments in
dynamic environments prove that our system can help robots
detect dynamic obstacles to navigate dynamic environments.
From our experiment observations, the performance of our
current algorithm is mainly bottlenecked by the sensor’s field
of view (FOV). So, future improvements can be made by
using the multiple-camera system sensor fusion.
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