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A vision-based autonomous UAV inspection framework for
unknown tunnel construction sites with dynamic obstacles

Zhefan Xu, Baihan Chen, Xiaoyang Zhan, Yumeng Xiu, Christopher Suzuki, and Kenji Shimada

Abstract—Tunnel construction using the drill-and-blast method
requires the 3D measurement of the excavation front to evaluate
underbreak locations. Considering the inspection and measure-
ment task’s safety, cost, and efficiency, deploying lightweight
autonomous robots, such as unmanned aerial vehicles (UAV),
becomes more necessary and popular. Most of the previous works
use a prior map for inspection viewpoint determination and do
not consider dynamic obstacles. To maximally increase the level
of autonomy, this paper proposes a vision-based UAV inspection
framework for dynamic tunnel environments without using a
prior map. Our approach utilizes a hierarchical planning scheme,
decomposing the inspection problem into different levels. The
high-level decision maker first determines the task for the robot
and generates the target point. Then, the mid-level path planner
finds the waypoint path and optimizes the collision-free static
trajectory. Finally, the static trajectory will be fed into the low-
level local planner to avoid dynamic obstacles and navigate to the
target point. Besides, our framework contains a novel dynamic
map module that can simultaneously track dynamic obstacles
and represent static obstacles based on an RGB-D camera.
After inspection, the Structure-from-Motion (SfM) pipeline is
applied to generate the 3D shape of the target. To our best
knowledge, this is the first time autonomous inspection has been
realized in unknown and dynamic tunnel environments. OQur
flight experiments in a real tunnel prove that our method can
autonomously inspect the tunnel excavation front surface.
Index Terms—TField Robotics, Motion and Path Planning, Per-
ception and Autonomy, Robotics and Automation in Construction

I. INTRODUCTION

Drilling and blasting is a common tunnel construction and
excavation method. The main cycle of this method includes
steps such as drilling for explosives, blasting, measuring
underbreaks, and spraying concrete. Among these steps, mea-
suring underbreaks in the tunnel excavation front is dangerous
for workers because of the potential falling rocks. With the
emergence of lightweight unmanned aerial vehicles, the robot
becomes suitable for handling measurement and inspection
tasks as it can avoid potential human dangers and inspect un-
reachable locations. Consequently, an autonomous inspection
framework is essential to improve the safety and efficiency of
underbreaks measurement and tunnel construction.

There are two main challenges of autonomous UAV in-
spection in tunnel environments. First, since the tunnel en-
vironments under construction are changing with time, it is
unlikely to have update-to-date maps of huge construction
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Fig. 1. Illustration of UAV navigating and inspecting the excavation front
in the tunnel environment. (a) The tunnel under construction. (b) The target
inspection area (the excavation front). (c) The robot navigates toward the
inspection target and avoids obstacles. (d) The robot inspects the target area.

vehicles and equipment nearby the excavation front. In this
way, the robot should be able to navigate from arbitrary
positions in the tunnel towards the excavation front area
(i.e., the end of the tunnel) based on the onboard sensing.
Previous works of the sampling-based unknown exploration
[10[2][31[4] can make the robot successfully navigate and map
unknown environments with the onboard sensor and applies
this exploration method to the unknown tunnel inspection [3].
However, because their approaches only utilize the explored
map information to randomly sample viewpoints, the output
trajectory could be zigzag and over-conservative, making
navigation less efficient. The second challenge comes from
the moving workers and machines in tunnels, as the robot
should track them and avoid them safely. Even though some
recent research [6][7][8]] has investigated the UAV dynamic
obstacle avoidance problems, their local planning strategies
without global path fusion make them insufficient for complex
inspection tasks in tunnel environments, which contain com-
plicated static structures and unpredictable dynamic obstacles.

To solve these issues, this paper proposes a vision-based
autonomous UAV inspection framework for unknown and
dynamic tunnel environments. We develop a small, lightweight
quadcopter with an RGB-D camera for safely sharing and
operating with vehicles, equipment and workers in the tun-
nel. The proposed approach utilizes the hierarchical planning
method decomposing the entire inspection planning into high,
mid, and low levels. The current task is determined at the high
planning level to generate the goal position for navigation and



exploration. Then, the mid-level planner will find and optimize
a smooth trajectory toward the goal based on the static obstacle
information from the incrementally built map. Finally, at the
low level, our vision-aided gradient-based planner is applied to
locally optimize the trajectory for avoiding dynamic obstacles.
In addition, we propose a novel dynamic map representation
that can simultaneously represent static and track dynamic ob-
stacles. The example tunnel environment and the autonomous
robot using the proposed method are shown in Fig. |1} The
main contributions and novelties of this work are:

o Hierarchical inspection framework: This paper applies
a hierarchical scheme to solve the autonomous inspection
problem based on different planning layers.

o Depth-based 3D dynamic map: Our method utilizes
depth images to detect and track dynamic obstacles and
update the occupancy information of static environments.

o Gradient-based dynamic obstacle avoidance: We pro-
pose a gradient-based B-spline trajectory optimization to
avoid dynamic obstacles in real time.

o Tunnel experiments with 3D reconstruction: The entire
system is verified with a customized quadcopter in a
tunnel with 3D reconstruction results of the target surface.

II. RELATED WORK

This section first discusses the recent trends and approaches
in construction site inspection by autonomous UAVs. Then,
relevant works on the key challenges of tunnel inspection (i.e.,
exploration and dynamic obstacle avoidance) are reviewed.

There are mainly two categories of construction site and
building inspection methods: model-based and non-model-
based methods. For the model-based methods, the inspection
target model is usually available, and the planner generates a
set of optimal viewpoints based on the provided model. In
[9], the target bridge is first partitioned into surfaces with
inspection nodes, and their GTSP solver is then applied to
find optimal paths for inspection. Similarly, some works use
the BIM model to find viewpoints of interest (VPI) and
solve the path-planning problem using the TSP-based method
[1O][11]. However, the target model can be unavailable for
tunnel inspection, so the robot can only rely on the onboard
sensors. In this way, the reactive methods are proposed for
unknown tunnel navigation using the lidar points measurement
[12][13]. Their methods can navigate tunnels of arbitrary
shapes but do not consider obstacle avoidance. Bendris et al.
[S] utilize the sampling-based method to generate viewpoints
for unknown exploration and inspection. Their method can
successfully avoid static obstacles but might not be safe for
dynamic obstacles due to the long replanning time. Besides,
their random sampling strategy in the explored area can
lead to zigzag and over-conservative paths for navigation. In
[14], it proposes a 3D reconstruction method for UAV tunnel
inspection without the path-planning strategy.

The unknown exploration problem can be viewed as deter-
mining a series of informative viewpoints [15]. Yamauchi [16]]
first uses the frontier exploration approach, allowing robots to
visit the map boundary to gain environment information. Later

in [17], it extends the frontier exploration to high-speed UAVs.
Some approach [18] applies the information-theoretic method
to evaluate the information gains of viewpoints. Considering
the limited computation power of lightweight UAVs, the
sampling-based methods [1][2][3][4] have been preferred in
recent years. In [1]], their RH-NBYV planner grows an RRT with
the information gains stored in each node. The robot will then
follow the highest gain branch in a receding horizon manner.
Selin et al. [2] combine the RH-NBV with frontier exploration,
further improving the exploration efficiency. To save and reuse
the computation in each planning iteration, Schmid et al. [3]]
adopt the RRT* algorithm with the rewiring to incrementally
build the tree. With a similar incremental sampling idea in [4],
it proposes a PRM-based method for exploration and obstacle
avoidance in dynamic environments.

Dynamic obstacle avoidance problem still remains open in
recent years. In the reactive-based methods, the robots directly
generate control velocities to avoid obstacles. Khatib [19]]
constructs the artificial potential field to find the velocity for
obstacle avoidance and navigation, and Berg et al. [20] use
linear programming to optimize velocities based on Velocity
Obstacle [21]]. These methods require less computation than
the trajectory-based methods but might lead to more myopic
performance. The trajectory-based methods are more prevalent
in UAV planning in recent years. Some [22][23][24][25] use
the model predictive control scheme to generate collision-
free trajectories based on the kinematic constraints. In [§],
it utilizes the B-spline optimization to generate collision-free
trajectory with vision aided, and Chen et al. [26] evaluate
trajectory risks using their dual-structure particle map.

III. PROBLEM DESCRIPTION

In an unknown tunnel space, V; € R3, with a straight tunnel
centerline C of a finite length, there exists an excavation front
(i.e., the target wall for inspection) at the end of the tunnel.
Inside the tunnel space V, there are different sizes of static
obstacles Ogaic and dynamic obstacles Ogynamic. A UAV with
an onboard depth camera is deployed for the inspection task.
Without a prior map M, the robot needs to first navigate
toward the excavation front area from an arbitrary position in
the space V;, then generate an inspection path to collect RGB
images of the inspection target, and finally return to the start
location. During the forward navigation and returning period,
the robot should avoid all static obstacles O and dynamic
obstacles Oyl in its sensor range. The final output of the
entire system should be the 3D shape of the inspection target
reconstructed using the collected RGB images.

IV. PROPOSED METHOD

The proposed inspection framework has three main compo-
nents shown in Fig. 2} visual perception, hierarchical planning,
and data post-processing. The visual perception step processes
the sensor measurements from the onboard depth camera and
the inertial measurement unit (IMU). The localization module
runs the visual-inertial odometry (VIO) algorithm with the
EKF fusion to get robot state estimation. Besides, the dynamic
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Fig. 2. System framework for autonomous inspection. Our proposed framework contains three parts: visual perception, hierarchical planning, and data post-
processing. In the visual perception step, the localization module applies the visual-inertial odometry with EKF fusion for state estimation. The dynamic map
module builds the static voxel map and tracks dynamic obstacles based on depth images. In the hierarchical planning section, the high-level and mid-level
planners use the static voxel map to generate the static trajectory. Then, the low-level planner uses the dynamic obstacle information to optimize the output
trajectory for execution. The final data post-processing step takes the images collected from the inspection stage to reconstruct the target model for analysis.

map module utilizes depth images to track dynamic obstacles
and update the occupancy information for static obstacles
using the voxel map, which will be further discussed in
Sec[IV-B| After the perception step, the hierarchical planning
section generates collision-free trajectories for the robot to
achieve the entire inspection task. Sec.[[V-A]will introduce the
logic of our hierarchical planning for the tunnel inspection and
the task decision maker in the high-level planner. Then, the
obstacle avoidance based on the mid-level trajectory planner
and low-level dynamic planner will be covered in Sec.
After finishing the inspection task, the data post-processing
step, mentioned in Sec. [[V-D] takes the collected target images
to perform 3D reconstruction to obtain the target model.

A. Hierarchical Planning and High-level Task Planner

Since our inspection problem consists of multiple compli-
cated procedures, applying only one planner cannot efficiently
accomplish the entire task. There are mainly three stages
of the inspection: (a) approaching the inspection target (i.e.,
the end of the tunnel), (b) collecting target images, and (c)
returning to the start location. Based on the inspection stages,
we decompose the problem into the following abstract tasks:

St = {Forward, Explore, Inspect, Return}, (1
where the Forward task aims at approaching the inspection
target, the Explore task helps the robot gain local map in-
formation for navigation, the Inspect task mode generates the
path for collecting target images, and the Return task mode
navigates the robot back to the starting location. During the
inspection process, the robot constantly alternates the task
mode using the proposed task planning algorithm (Alg. [I). For
each abstract task, the task planner generates the corresponding
goal positions and passes them to the lower-level planners for
path planning and trajectory optimization.

In the beginning stage of task planning (Alg. [I), the task
planner sets the robot to the Forward task mode as the robot
needs first to approach the tunnel end (Line [T). The task
planner runs at a certain replanning frequency to select the
current task mode for the robot. Before the robot arrives at
the inspection location, the Forward mode (Lines m-@) lets
the robot generate a forward goal with a distance [ from the
current robot position for navigation. Since, at this stage, the
robot does not have a complete environment map and can
only rely on the partially built from its flight, it will first try
using the partial map to perform local obstacle avoidance to
achieve the forward goal (Line [0). Suppose the lower-level
planner fails to find a collision-free trajectory due to the lack
of environmental knowledge. In that case, the task planner
will switch the current task to the explore mode to increase the
local map information (Lines[T0{I2). In the Explore mode, the
planner first samples to get the best viewpoints with the highest
sensor information gain in the current map then uses the lower-
level planner to generate a feasible trajectory for exploration,
and finally switches back to the previous task mode (Lines [I3}
[I6). For the information gain evaluation, refers to [[T[2][3][4]
for further details. At the start of each replanning iteration, the
algorithm checks whether the robot has reached the inspection
target (Lines [A}6). If the robot detects the inspection target
wall, the planner will enter the Inspect mode and generate
a zigzag path for collecting target images. However, when
the built map around the target is not detailed enough for
the inspection path generation, the planner will switch to
the explore mode again to increase the explored map range
(Lines [T7}ZT). After finishing collecting images, the planner
will enter the Return mode and navigate back to the start
position (Lines 24}27). Note that in the returning step, the
robot has already had a sufficient informative map for static
obstacles, incrementally built from the forward and explore
step, to generate a global trajectory to the origin directly.



Algorithm 1: High-level Task Planning Algorithm

1 Teur + Forward Mode ; > initial task
2 Cy + false ; > termination condition
3 while not C; do

4 Zcona < reachInspectionTarget();

5 if Z.ona then

6 Teur < Inspect Mode;

7 if Teur = Forward Mode then

8 Pooat < getForwardGoal();

9 Oiraj, success <— lowerLevelPlanner(Py,);
10 if not success then

11 Teur < Explore Mode;

12 Torev <— Forward Mode;

13 else if 7., = Explore Mode then

14 Paooat < getBestViewpoint();

15 Ouaj < lowerLevelPlanner(Py,);
16 7zurr — Erev;

17 else if 7., = Inspect Mode then

18 Orajs SUCCESS <— getInspectionPath();
19 if not success then

20 Teur < Explore Mode;

21 Torev < Inspect Mode;

22 else

23 Teurr < Return Mode;

24 else if 7., = Return Mode then

25 Pooat < getReturnGoal();

26 Ouaj < lowerLevelPlanner(Py,);

27 C; + isInspectionComplete();

B. Perception and 3D Dynamic Mapping

This section introduces our proposed 3D dynamic map for
navigating dynamic environments, as shown in Fig. BJd. Our
dynamic map adopts a hybrid method to represent environ-
ments by using the occupancy voxels for static obstacles and
the bounding boxes for dynamic obstacles. For static obstacles,
we predefine a static voxel map size (i.e., maximum voxel
numbers) based on the environment and store the occupancy
information of each voxel in an array with the preserved
length. This allows our planners to access the occupancy
information with O(1) time complexity. For the occupancy
information update of each voxel, as most static occupancy
mapping algorithm does, we apply the classic Bayesian filter
with the Markov assumption:

p(z)

p(z|z)

el "y Tl @
where [;(z) is the log odds for the voxel being occupied. By
applying Eqn. 2] we can update the occupancy information
(i.e., log odds) for each voxel by recursively adding the inverse
sensor model log 11; E‘;JZ% with the predefined prior log %
Besides, since dynamic obstacles can also be mapped into the
static voxel map, which can lead to noisy voxels, we iterate
through each detected dynamic obstacle bounding box and set
all voxels inside the dynamic regions to be free.

ly(x) =log

(a) RGB Camera View. (b) Depth Detection. (c) U-depth Map with the Detetion Results.

=> Camera Pose X

@ Dynamic Obstacle
’/ Voxel Map (static)\
= P

(d) 3D Dynamic Map.

Fig. 3. Illustration of the proposed 3D dynamic map. (a) A person walks in
front of the robot in the RGB camera view. (b) The person is detected as a
dynamic obstacle in the depth image. (c) The detection results in the U-depth
map for obstacle widths and thicknesses. (d) The 3D dynamic map shows the
dynamic obstacle as a bounding box and static obstacles as the voxel map.

The dynamic obstacles are detected and tracked using the
depth image and represented by axis-aligned 3D bounding
boxes. There are mainly three steps in the proposed method:
region proposal detection, map-depth fusion and dynamic
obstacle filtering. In the region proposal detection step, we use
the method mentioned in [6] to generate the U-depth map, as
shown in Fig. 3k, by constructing a histogram of the depth
values using the depth image. The vertical axis from top to
bottom of the U-depth map represents the depth range of the
user-defined bin width. Intuitively, the U-depth map can be
viewed as a top-down view image. Inspired by [6][24], we
apply the line grouping method to detect the obstacle regions
in the U-depth map. With these detection results, we can obtain
the widths and thicknesses of obstacles and then further find
the corresponding heights in the original depth image as shown
in Fig. Bb. After this step, we can get the “region proposal
bounding boxes” for dynamic obstacles by applying coordinate
transformation into the map frame. Since the region proposals
are only the rough detection results, our second step, map-
depth fusion, inflates those region proposals locally with a
ratio A\ and then searches occupied voxels from the static voxel
map to get the refined bounding boxes of obstacles. With the
refined bounding boxes, the dynamic obstacle filtering method
is applied to identify and track dynamic obstacles. First, we
utilize the Kalman filter to track and compute the velocity of
each obstacle bounding box with the linear propagation model:

p pk 1
PEFL = pE + VE(thar — i), VE=Z0— (3
tp —tp—1

where pF*1 is the predicted obstacle position in the next time
step and v¥ is the previously estimated velocity. Then, we
identify those bounding boxes with velocities greater than the
threshold Vi, as the dynamic obstacles. Finally, we remove
the bounding boxes with jerky motions using the obstacles’
history velocities, considering the detection noises that make
static obstacles shake back and forth slightly.



C. Navigation and Obstacle Avoidance

When a goal position is determined by the high-level task
planner, the mid-level static planner first finds a smooth
trajectory considering static obstacles. Then, using this static
trajectory, the low-level dynamic planner optimizes a collision-
free trajectory based on static and dynamic obstacles at a
certain replanning frequency. For the mid-level static planner,
we apply the RRT* planner to find the waypoint path and use
the minimum snap-based polynomial optimization with corri-
dor constraints [27]][28]] for trajectory generation. To achieve
fast replanning for dynamic obstacle avoidance, the low-level
planner adopts our gradient-based trajectory optimization. The
B-spline trajectory with order k over a time knot vector can
be parameterized as a series of control points:

S={P,,Py,P5,...Py_1, Py}, PR 4)

where the optimization variable set S contains the N —2(k—1)
intermediate control points P;. With the trajectory optimization
variables, we can write the objective function as follows:

Ctolal(S ) = Qcontrol * Ceontrol + Qsmooth * Csmooth

+Qstatic Cstatic + Qdynamic Cdynamica

(&)

and the weighted sum has four costs to minimize: the control
limit cost, the smoothness cost, the static collision cost, and
the dynamic collision cost. The control limit cost ensures the
trajectory has feasible velocities and accelerations. The control
points for velocity V; and acceleration A; are computed by:
Py — Pi7 A, = Vig1 — Vi7 ©)
ot ot

where §t is the time step. We use the L2 norm to penalize the
infeasible velocities and accelerations:

Vi — YV, 2 Ai—a 2
Ccontrol = Z || \ 1max||2 + H ) maxH2’ (7)

V, =

in which vy and an. are the maximum velocity and accel-
eration limits. The A terms are the unit normalization factor.
Note that the control limit costs are zero for velocities and
acceleration that are less than the limits. The smoothness cost
tries to reduce the jerk (i.e., the third derivative to position)
of the trajectory using the following equations:
A1 — A
Csmooth = ; ||J'LH%3 Jz = % (8)
The static collision cost is computed based on the proposed
circle-based guide-point method shown in Fig. . The initial
trajectory is shown as the blue dot line with the brown collision
control points. To calculate the costs for those collision control
points, we first search a collision-free path (purple dots and
lines in Fig. Ap) using A* or Dijkstra to bypass the static
obstacle. If there are IV collision control points, we cast a ray
for the collision control point of sequence order n with the
angle 7%_01 degree. Note that the angle is between the casting
ray (dot blue arrow) and the line connecting the first and
last collision control points. The guide points Pgyiqe are the
intersection points of the casting ray with the searched path.

The algorithm is circle-based because the direction angles
sweep a semi-circle. With the associated guide points for each
collision control point, we design the total static collision cost
based on experiments as a clipped cubic penalty function:

3
Cstatic = Z (max (dsafe - SignDiSt(Pia P:guide)7 O)> ) (9)
?

where dgf is the user-defined safe distance, and the signed
distance function defines the positive and negative distance as
the control point outside and inside the obstacle. Intuitively,
we penalize the control points with small or negative distances
to obstacles, and the static collision costs are zero for control
points with a distance greater than the safe distance.

Since the dynamic obstacles are moving, it is unreliable to
only use the current detected information for cost computation.
So, we propose the receding horizon distance field to estimate
the dynamic collision cost with future predictions shown in
Fig. @p. In this figure, the dynamic obstacle with left moving
velocity V, is represented as the blue circle with the center
O and the radius r. We apply linear prediction to get the
obstacle’s future position C with the prediction horizon &
time step. Since the reliability of future prediction decreases
with the increasing prediction time, we linearly decrease the
obstacle size to zero at the final predicted position C in the
receding horizon manner. So, we can obtain the collision
region as the combination of a polygon region AOBC and
a circular region enclosed by the arc 1@3, line AO, and line
BO. When the control point P; is inside the polygon region,
we draw a red line through the control point P;;, perpendicular
to the line AC intersecting at point D. The distance d; to the
safe area (outside the collision region) can be computed as:

Adi = [[D—0||; — ||Pip — O'||2. (10)

On the other hand, when the control point P;. is inside the
circular region, the distance d; to the safe area is:

Adi =1 — ||Pic — Og||2- an

For the control points P; o that are outside both polygon and
circular regions, we set the distance d; to the safe area to zero.
So, with the distance to the safe area, we can use the following
equation to compute the final dynamic collision cost:

Caynamic = Z (maX(Adi7 0)) 3.

?

(12)

For both static and dynamic collision costs, the gradients can
be computed using the chain rule with Eqn. [9] and Eqn[T2]

D. Inspection and 3D Reconstruction

After finishing the entire inspection task, the data post-
processing module applies the Structure-from-Motion (SfM)
to reconstruct the 3D shape of the inspection target from
the collected target images. When the robot has reached
the inspection target, it first explores the local area until
having enough map information about the target. Then, in
our implementation, the robot generates a zigzag pattern path
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Fig. 4. Illustration of the collision cost in our B-spline optimization. (a) The
static collision cost is calculated using the proposed circle-based guide points
(red dots). (b) The dynamic collision cost is obtained by the receding horizon
distance field, which considers the future predictions of the obstacle positions.

fully covering the target wall and collects the color images
during the flight. Our SfM pipeline for reconstruction is based
on COLMAP [29]. The algorithm first extracts the features
of each image using a numerical descriptor. Since our input
images are from the streaming of an RGB camera, the second
step utilizes sequential matching to find the correspondence in
different images. Finally, from an initial corresponding image
pair, the algorithm incrementally reconstructs the 3D shape of
the inspection target by triangulating new points.

V. RESULT AND DISCUSSION
A. Implementation Details

We conduct simulation experiments and physical flight tests
in dynamic tunnel environments to evaluate the proposed
method’s performance. The simulation environments are based
on ROS and Gazebo. For the physical experiments, we visited
a tunnel under construction in Japan and applied our cus-
tomized quadcopter (Fig. [5) to test the proposed framework.
The quadcopter is equipped with an Intel RealSense D435i
stereo camera, a PX4-based flight controller, and an NVIDIA
Jetson Xavier NX onboard computer. The weight is ~1.5kg
with a 15-minute flight duration. We adopt the visual-inertial
odometry (VIO) algorithm [30Q] for robot state estimation. All
of the perception and planning computations are performed
within the onboard computer. The color images are collected
during the inspection stage with the RealSense D435i camera,
and the data post-processing for 3D reconstruction is com-
pleted using the desktop with an NVIDIA RTX 3080 GPU.

B. Evaluation of Navigation and Obstacle Avoidance

The navigation and obstacle avoidance in the forward task
(i.e., approaching the tunnel end) is the most challenging and
time-consuming part of the entire inspection process since the
environment is cluttered and unknown. So, to evaluate the
performance of forward navigation and obstacle avoidance, we
prepared 5 simulation environments containing different static
and dynamic obstacles, with one example environment shown

CUAV Nora Flight Controller

Fig. 5. The customized autonomous quadcopter for inspection experiments.

Tunnel Start Static Obstacle Tunnel End

Dynamic Obstacle

Inspection Target

Fig. 6. Illustration of an example simulation tunnel environment in Gazebo.
In the forward task, the robot needs to navigate from the tunnel start (left
side) to the tunnel end (right side) and avoid static and dynamic obstacles.

in Fig. [f] For benchmarking, we select the sampling-based
planning methods (SBP) [1]][3] and the dynamic exploration
planning (DEP) method with modifications to the tunnel
environments. Besides, we also include our method without
using the dynamic map (mentioned in Sec. [[V-B) to compare
the obstacle avoidance performance. In each experiment, we
let the robot navigate from the start of the tunnel to the end
of the tunnel. We run 10 experiments in each environment
of different obstacles and record the average navigation time,
the average replanning time for dynamic obstacle avoidance,
and the collision rate over all experiments. Note that we set
the navigation time and replanning time of the sampling-based
planning methods (SBP) [T]|[3] to 100% for comparison. The
collision rate is calculated by the number of experiments with
collisions divided by the total number of experiments.

From the results in Table [, one can see that our method
has the second least navigation time, which is 81.69% of the
sampling-based planning (SBP) method, and takes almost the
same amount of time as its non-dynamic-map version. The
dynamic exploration planning (DEP) method uses less time
than the sampling-based method and longer time than our
method. From our observations, both the SBP and the DEP
generate their trajectories inside the explored regions, which
is over-conservative, leading to more stop-and-go behavior. On
the contrary, since our planner adopts a hierarchical scheme,
the task planner first tries using the more aggressive local
planner for obstacle avoidance by planning in the unknown
regions and only applies the conservative exploration planner
when the local planning fails. This task-switching behavior
hugely reduces the navigation time. For the replanning time,
our method takes only 1.16% of the time compared to the
SBP and significantly less than the DEP. This huge difference
in the replanning speed is mainly due to our computationally
lightweight gradient-based trajectory optimization and the long



computation time in the information gain evaluation of the
SBP and the DEP. For the collision rate, it is shown that our
method has no collision among all experiment runs, and both
the SBP and our method without the dynamic map have a high
collision rate (around 30%). The DEP has a lower collision
rate than the SBP since it utilizes an incremental roadmap for
faster dynamic obstacle avoidance but still has more collisions
than our method. Comparing our method with and without the
dynamic map shows that the dynamic map version has a much
lower collision rate by using dynamic obstacle information.

TABLE I
THE BENCHMARK OF THE NAVIGATION TIME, THE REPLANNING TIME,
AND THE COLLISION RATE BY RUNNING 50 SIMULATION EXPERIMENTS.

Methods Nav. Time Replan. Time  Collision Rate
SBP [113] 100 £ 0% 100% 30.00%
DEP 92.80 + 3.01% 54.30% 24.00%
Ours w/o DM 81.06 + 4.40% 1.20% 32.00%
Ours 81.69 + 3.66% 1.16% 0.00%

C. Evaluation of Dynamic Obstacle Tracking

We measure the average tracking errors in positions, ve-
locities, and obstacle sizes shown in Table [lI| to evaluate the
dynamic obstacle detection and tracking performance. The
ground truth states of the obstacles can be easily obtained
in the simulation experiments, and we apply the OptiTrack
motion capture system in the physical tests to obtain the
ground truth states. We let two persons walk within the motion
capture area, compare the tracking results from the robot
and the motion capture system, and use the average value
differences as tracking errors. From Table [[I} one can see that
the position errors are 0.09m and 0.19m in simulation and
physical tests, respectively. The position errors in the physical
tests are larger than in simulation tests due to the image’s
noises from the depth camera. Similarly, the camera noises
also make the velocity errors in physical tests greater than the
simulations’. The size errors are similar in both simulation and
physical tests. In the experiments, to account for the tracking
errors in the positions, velocities, and sizes, we increase the
safety distance to obstacles by a self-defined size r, and our
experiment results prove that our dynamic obstacle tracking
system can let successfully avoid moving obstacles.

TABLE 11
MEASUREMENT OF THE DETECTION AND TRACKING ERRORS.

Errors Simulation Tests | Physical Tests
Position Error (m) 0.09 0.19
Velocity Error (m/s) 0.10 0.21
Size Error (m) 0.25 0.25

D. Physical Flight Tests

To evaluate and verify the proposed framework, we ran
flight tests in a tunnel under construction in Japan, shown in
Fig. |I| and [/} In each flight test, the robot starts at 20 meters

Dynamic Obstacle

Static Obstacle
Robot

S

Fig. 7. The physical inspection flight test in a tunnel under construction in
Japan. The bottom shows the Rviz of the obstacles and the trajectory.

in front of the tunnel excavation front and navigates toward
the inspection area. Note that there are static and dynamic
obstacles (i.e., walking workers) on the robot’s way to its target
location shown at the top of Fig. [7] The corresponding Rviz
visualization is shown at the bottom of Fig. [7] and one can
see that the robot can generate a collision-free trajectory for
navigation. After reaching the inspection area, the robot will
follow the zigzag path to inspect the tunnel excavation front
shown in Fig. [Id and collect RGB images for further 3D re-
construction. During the navigation period, the robot’s velocity
is maintained at 1.0m/s. The results show that our framework
can complete the entire inspection task autonomously.

E. Evaluation of 3D Reconstruction

The final output of our framework is the 3D shape of
the tunnel excavation front shown in Fig. [§] To obtain the
results, we run the SfM-based reconstruction mentioned in
Sec. with 294 color images of 640x480 resolution. The
total processing time is 30 minutes using an NVIDIA RTX
3080 GPU, and the minimum number of images required for
this experiment is 60 images which take only 5 minutes for
reconstruction. In Fig.[§] the first row shows the reconstruction
results from different views, and the second row visualizes
the error heatmap from the comparison with the ground truth
model. Note that we use the Topcon laser scanner to obtain
the ground truth model of the inspection target. The red
and blue portion of the heatmap represents the high and
low reconstruction error values. The average error of the
reconstruction model is 5.38cm with a standard deviation of
7.96cm. The third row shows the heatmap comparison with
the tunnel CAD model, the designed shape for the tunnel.
From the heatmap, the workers can identify the yellow and red
regions as the locations for concrete spraying and excavation.

VI. CONCLUSION AND FUTURE WORK

This paper presents a vision-based autonomous UAV in-
spection framework for tunnel environments. The proposed
framework adopts a hierarchical planning scheme to solve
the complicated inspection problem using different planning
layers. Our depth-based 3D dynamic map can represent static
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Fig. 8. The 3D reconstruction results of the excavation front of the tunnel
under construction in Japan. The first row shows the 3D reconstruction model
from different views. The second row visualizes the error heatmap obtained
from the comparison of the laser-scanned ground truth. The third row presents
the heatmap comparison of the reconstruction model with the CAD model.

obstacles and track dynamic obstacles simultaneously. The
experiment results prove that our framework can make the
quadcopter safely navigate toward the inspection target to
perform the inspection and return to the origin. The final
3D reconstruction results obtained from our SfM-based data
post-processing pipeline have a low error compared to the
ground truth. For future work, we want to apply learning-based
methods to classify dynamic obstacles for better performance.
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