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Vision-aided UAV Navigation and Dynamic Obstacle Avoidance using
Gradient-based B-spline Trajectory Optimization

Zhefan Xu, Yumeng Xiu, Xiaoyang Zhan, Baihan Chen, and Kenji Shimada

Abstract— Navigating dynamic environments requires the
robot to generate collision-free trajectories and actively avoid
moving obstacles. Most previous works designed path planning
algorithms based on one single map representation, such as
the geometric, occupancy, or ESDF map. Although they have
shown success in static environments, due to the limitation of
map representation, those methods cannot reliably handle static
and dynamic obstacles simultaneously. To address the problem,
this paper proposes a gradient-based B-spline trajectory opti-
mization algorithm utilizing the robot’s onboard vision. The
depth vision enables the robot to track and represent dynamic
objects geometrically based on the voxel map. The proposed
optimization first adopts the circle-based guide-point algorithm
to approximate the costs and gradients for avoiding static
obstacles. Then, with the vision-detected moving objects, our
receding-horizon distance field is simultaneously used to prevent
dynamic collisions. Finally, the iterative re-guide strategy is
applied to generate the collision-free trajectory. The simulation
and physical experiments prove that our method can run in
real-time to navigate dynamic environments safely.

I. INTRODUCTION

Light-weight autonomous UAVs are massively deployed
in various industrial applications, such as inspection, explo-
ration, and search and rescue. The environments of those
applications are usually highly complex and dynamic, involv-
ing human workers, static structures, robots, and vehicles. As
one of the most fundamental components of robot autonomy,
the safe trajectory planning algorithm becomes essential to
let UAVs deal with complex environment structures while
actively sensing and avoiding dynamic obstacles.

Safe navigation in dynamic environments mainly involves
three challenges. Firstly, the robot must track and represent
static and dynamic obstacles simultaneously. Recent popular
planning methods [1][2] apply the voxel-based map includ-
ing the occupancy map and ESDF map [3][4] as obstacle
representation. Although those mapping algorithms can deal
with arbitrarily complex static environments, they can hardly
distinguish and capture dynamic obstacles, leading to the
limited performance of the mentioned planners. Secondly,
the planner should be able to generate trajectories with
complicated static structures. Some vision-based algorithms
[51[6][7] represent obstacles geometrically using the bound-
ing boxes or ellipsoids. Those methods can safely avoid dy-
namic obstacles but might fail when environmental structures
become complicated. Finally, due to the unpredictable and
quickly changing environments, high-frequency real-time
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Fig. 1.
The upper presents the physical autonomous flight in a dynamic environ-
ment. The bottom shows our customized UAV with onboard sensors.

The UAV navigating with obstacles using the proposed algorithm.

planning is necessary to prevent dynamic collisions, which
further adds burden to the limited onboard computations.

To solve these issues, this paper proposes the Vision-aided
Gradient-based B-spline Trajectory Optimization (ViGO) al-
gorithm. The algorithm utilizes our vision-aided 3D dynamic
map, enabling tracking dynamic obstacles and representing
complex static environments simultaneously. The proposed
circle-based guide-point algorithm approximates the costs
and gradients of static collision to improve optimization
speed. With future predictions, the receding horizon distance
field is applied to prevent collisions considering dynamic
obstacles. Finally, the iterative re-guide strategy is used to
real-time generate collision-free trajectories. Our customized
UAV and the dynamic environment navigation example are
shown in Fig.[I] and the main contributions of this work are:

« Vision-aided 3D Dynamic Map: This algorithm uti-
lizes the depth image with the occupancy voxel map to
track 3D dynamic obstacles and adopts this 3D dynamic
map to perform the trajectory optimization.

¢ Circle-based Guide-Point Algorithm: We propose the
guide-point algorithm to approximate the costs and
gradients of static collisions for trajectory optimization.

o Receding Horizon Distance Field: The proposed re-
ceding horizon distance field utilizes the obstacles’
future predictions to estimate the collision costs and
gradients for preventing dynamic collisions.



II. RELATED WORK

Recent years have seen many works of UAV navigation in
dynamic environments. There are mainly two categories of
methods based on their map representations: the voxel map-
based method and the geometric map-based method. With
the advantage of representing arbitrary complex 3D objects,
the voxel maps such as [3][4][8] are widely used in trajectory
planning. Due to the differential flatness property [9] of the
quadcopter, [10] generates the trajectory using the minimum
snap optimization, iteratively adding intermediate waypoints
to prevent collisions. Inspired by [11][12], [1] formalizes the
unconstrained optimization utilizing the distance information
from the ESDF map. Later, [2] applies the collision force to
avoid obstacles locally and reduce the ESDF update compu-
tation. In [13], incremental sampling is proposed to reduce
the computation time for dynamic environment exploration.
Although the above methods prove high computational ef-
ficiency and success in aggressive flights, their map cannot
capture and distinguish the dynamic obstacle well, leading
to a limited performance in highly dynamic environments.

Unlike the voxel map, the geometric map usually repre-
sents each obstacle as a single bounding box, sphere, or
ellipsoid. Based on the analytical form of those geome-
tries, early approaches propose the artificial potential field
[14] and velocity obstacles [15] to generate simple control
commands to prevent collisions. Recently, the model predic-
tive control-based (MPC) methods [16][17][6][18][19] have
become popular for obstacle avoidance while considering
robot dynamics. In [16], the distance cost is applied for each
obstacle for the trajectory penalty. [17] adopts the chance-
constrained formulation and reduces computation by dis-
junctive programming to consider the uncertainty. Similarly,
[6][18] approximates the chance constraint by linearization
and achieves real-time obstacle avoidance. Those mentioned
methods assume the obstacles can always be represented
using geometric shapes and rely on vision-based obstacle
detection [18][5]. However, when the static environmental
structure becomes complex, those geometric shapes might
become over conservative or even unable to model static ob-
stacles, resulting in collisions and suboptimal performance.

A few methods also distinguish static and dynamic obsta-
cles for trajectory planning. A two-layer planner scheme is
proposed in [20] to deal with static and dynamic obstacles
simultaneously. With the dual-structure particle-based map,
[21] adopts the sampling-based planner to evaluate the risk of
trajectories. However, their solutions can be suboptimal since
they only sample from the predefined motion primitives. In
[22], learning-based detection is applied to track the dynamic
obstacles with the occupancy map. [23] applies point cloud-
based detection with the voxel map and uses linear prediction
of obstacle state to achieve safe navigation. However, their
method of fully trusting linear predicted future states might
be over-conservative and even fail to find the solution in
some narrow environments. Unlike the previous methods,
our approach utilizes the vision-aided 3D voxel map to track
dynamic obstacles and applies the gradient-based trajectory
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Fig. 2. Tllustration of the 3D dynamic map. (a) Depth image with detected
objects. (b) RGB camera view. (c¢) U-depth map generated by the depth
image with the detected results. (d) Visualization of the dynamic map.

optimization considering the dynamic obstacles’ future states
in a receding horizon manner.

III. METHODOLOGY

This section presents each component of our proposed
trajectory optimization framework. In Sec. [[lI-A] the vision-
aided 3D dynamic map system is introduced. Then, the
unconstrained B-spline trajectory optimization is defined
in Sec. The static collision cost using our circle-
based guide point algorithm is discussed for static obstacle
avoidance in Sec. @ Then, we formalize the receding
horizon distance field for calculating the dynamic obstacle

cost in Sec. [llI-D} Finally, Sec. introduces the iterative
re-guide optimization to generate the collision-free trajectory.

A. Vision-aided 3D Dynamic Mapping

This part introduces a lightweight mapping method to
handle static and dynamic obstacles simultaneously.The dy-
namic map method has become popular in recent years to
track dynamic voxels [24][25][26]. Unlike those methods,
this method is based on the 3D occupancy map and utilizes
the depth image to perform dynamic obstacle tracking. There
are mainly four steps to update the map and track dynamic
obstacles: region proposal detection, map-depth fusion, dy-
namic obstacle filtering, and dynamic region cleaning.

The proposed method first applies the depth image-based
detection to find the possible obstacle regions as the pro-
posals. Given the input depth image, we first generate the
u-depth map shown in Fig. @;, as described in [5][18]. The
u-depth map can be interpreted as the top view of the objects,
so the lengths and widths of potential objects can be detected
as bounding boxes by line grouping shown in Fig. Zt. Then,
with obstacles’ widths, the bounding boxes of objects can
be found in the original depth image by depth continuity
checking. After performing the coordinate transformation,
we can obtain 3D bounding boxes of potential objects in the
world frame. Note that the obtained bounding boxes only



preserve the objects’ rough positions and sizes and might
include static obstacles. To refine the positions and sizes
of obstacles as the second step, we enlarge those detected
bounding boxes as the region proposals by an inflating factor
and check the occupancy information in the voxel map,
which stores discrete but more accurate information. Through
this region proposal search, we can get refined results.

With the refined bounding boxes, the third step is to filter
out static obstacles. We first apply the Kalman filter to track
and determine the velocity of each detected object. We can
remove most static obstacles by using the minimum velocity
threshold criteria. However, the detection noises make some
static obstacles shake back and forth slightly, leading to some
velocity errors. To solve this issue, we apply our continuity
filter to remove objects with jerky motions using the history
of object velocities. Finally, since the static occupancy map
might still keep the occupied voxel of dynamic obstacles,
we apply the histories of dynamic obstacles to clean those
regions. The final map output is shown in Fig. 2d.
B. B-spline Trajectory Optimization

B-spline curves are widely used in trajectory optimization
[1][2] due to its local curve control ability, convex hull
property, etc. A B-spline curve with order %k is composed
of several k — 1 degree polynomial basis functions with
corresponding control points defined over a knot vector.
Given the global trajectory or the goal position, we can
parameterize the trajectory into a set of control points:

S ={P1,Py,Ps,....Py_1,Py}, PR’ (1)

where the first and last k£ — 1 control points are the position
of start and goal, respectively. The optimization variables are
the set S of the intermediate N — 2(k — 1) control points.

The optimization follows the gradient-based unconstrained
formulation. With the variable set S, the objective cost
function is defined as:

Ctolal(S) = Qcontrol * Ccontrol + Qsmooth * Csmooth (2)
+tatic * Ctatic + Qdynamic * CdynamiCa
which is a weighted combination of control limit, trajectory
smoothness, static collision, and dynamic obstacle costs.
The static collision cost and dynamic obstacle cost will be
discussed in detail in Sec. and
The control limit cost forces the trajectory to have feasible
velocities and accelerations. The derivative of the B-spline
curve can be represented by another B-spline, so the control
points V; and A; for velocity and acceleration are:
Pit1— Pi, A, = Vig1 — Vi’ 3)
ot ot
where 0t is the time step. So, given the maximum velocity
Vmax and acceleration an,x, the cost function is defined as:

Vi — Vx| |2 A; —an|3
Ccontml = Z || : )\velmaXHQ + H : )\aCCmaXH2’ (4)
i

V=

in which the L2 norm is applied for the control limit penalty
with the unit normalization factor A when the velocity and
acceleration exceed the limits.
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Fig. 3. Illustration of circle-based guide-point assignment. For the given
collision trajectory, we first find the collision control points and search
the collision-free paths. The guide points shown as purple points are the
intersections between circle-based raycasting and the searched paths.

Algorithm 1: Circle-based Guide-Point Algorithm

1 Cguide «~0;

2 Oy, < collision trajectory;
3 Scol < findCollisionSet (0, );

4 Psearch < pathSearch (S, start, Scop.end);

5 L < formLine(Pyeyrch-start, Psearch-end);

6 n < 1; N — S .5ize + 1;

7 for P, in S, do

8 Pyoj < Pc.projectOnto(L);

9 Odirect < % ST > direction angle
10 Pyuige < raycastOntoPath (P, Quirect, Psearch )

11 Couide-insert(P¢, Pyyige );

12 n<n+1

13 return Cyiqc;

> guide-point set

The smoothness cost is applied to prevent the jerky tra-
jectory. Following the same manner, we can get the control
points J; for the jerk, the derivative of acceleration, and apply
the following cost function:

A — A

_ 112 L —
Camooth = ZinJZHQ, Ji 5 (5)

C. Static Collision Cost

Since the static obstacles are represented by the occupancy
voxels on the map, the collision costs and gradients for the
above optimization cannot be directly obtained. So, we apply
the proposed circle-based guide-point algorithm to estimate
the costs and gradients of static collisions.

The costs and gradients for the optimization variable,
control points, can be estimated by the guide points. The
procedure of finding guide points is illustrated in Fig. [3] and
Alg. [Tl Given a collision trajectory, the planner first find
the collision set” S., which consists of collision control
points (Fig. |3| orange points). Inspired by [2], we apply the
path-search algorithm, such as A* or Dijkstra, to locally
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Fig. 4. Illustration of receding horizon distance field. We linearly decrease
the safety distance r from the current obstacle position Qg to the last
predicted position Oy, in a receding horizon manner.

find a collision-free path Pgeuen bypassing the collision set.
Then, we project each point in the collision set onto the
connecting line between the start and goal position of the
searched path (Alg. [I] Line [8). With the projected point, we
calculate the direction angles 6girec; ranging from (0, 7) and
use the point-angle pair to cast a ray onto the searched path.
The intersection point between the ray and the searched path
is the guide point for that collision control point shown as
purple points in Fig.[3| The algorithm is circle-based because
the direction angles sweep a semi-circle.

With the associated guide point and a predefined safety
distance dgafe, the collision cost of collision control points
can be calculated by:

3
Coutic = Y <max (dsafe — signDist(P;, Pl ), o)> . (6)
?

where the signed distance defines the positive and negative
distances as the control point outside and inside the obstacle,
respectively. Eqn. [6] penalizes the control points whose
signed distance is less than the safe distance using the cubic
function. In this way, the gradient for each collision control
point can be calculated with the chain rule:

. . i 2 IA)i — P uide
Vi = 3(dsafe—51gnDlst(Pi7P{guide)) L il g
||Pl - PguideH2

where f’i is the initial collision control point, and the di-
rections of the negative gradients are to push the collision
control points to a free region, and Fig. (3| shows the op-
timized trajectory got a smooth turning to avoid the static
obstacle by using the circle-based guide points.

D. Dynamic Obstacle Cost

Unlike static obstacles, the states of dynamic obstacles are
changing and uncertain, making it unreliable to use only the
current captured information for trajectory optimization. So,
this section introduces the receding horizon distance field for
collision cost estimation, which evaluates the distance to the
safe area of the given points based on future predictions.

The illustration of the receding horizon distance field for
dynamic obstacles is shown in Fig.[d] The dynamic obstacles
are represented as positions with estimated velocities and
sizes. Given the obstacle’s current position Qg and velocity
Vo, we apply the linear predictor to obtain the k steps’

Algorithm 2: Iterative Re-guide Optimization

1 Qugtatic > Odynamic < Q0 5 > Cost Weights
2 A+ 15; > user-defined inflate factor
3 P < Optimization Solver;
4 S «+ Control Points;

5 Teo < true ;

6 Tgc < true ;

7 while 7T or 74 do

8 reguide, Syeguice = P.iSReguideRequired(S);

> static collision
> dynamic collision

9 if reguide or firstTime then

10 P.assignNewGuidePoints(S;cquide )
11 else if not reguide and 7. then

12 Ostatic <= A+ Olstatic

13 else if not reguide and 7. then

14 Oldynamic — A Qdynamic

15 S < P.updateCostAndSolve();

16 Owaj < P.evaluateTrajectory(S);

17 Tse < P.checkStaticCollision(o;);

18 Tae < P.checkDynamicCollision(o;);
19 d return oy,

future positions {01, O3, ..., Ok}. To construct the distance
field, we draw a circle with the safe radius r centered at
Og. Then, considering the unreliability of future predictions,
we linearly decrease the safe radius r to zero in a receding
horizon manner, leading to a cone-shape collision region
(blue dot lines). By avoiding this region, we can generate
the trajectory considering future predictions while preventing
over-conservative behaviors. So, for dynamic obstacle cost
estimation, we first calculate their distances to the safe area
considering the following two cases:

Case 1. The control point P;. is in the circular region
enclosed by arc 1@ line AQg and BOg. The distance to
safe area Ad; can be calculated by:

Ad; =1 — ||P; . — Ogl|2, ®)

Case 2. The control point P;; is in the polygon region
AQOyBOj,. We draw a line through P; , which is perpendicular
to the line BO, and intersects QOgOy at O/. The distance to
safe area Ad; can be calculated by:

Adi=|ID - 0|z — [P, — O[] ©)

With the distance to safe area Ad;, we can finally calculate
the costs for all the collision control points by:

Capnamic = _ (max(Ad;, 0))3,

?

(10)

and the gradient for each collision control point can be
calculated using the chain rule with Eqns. [§] and [0

E. Iterative Re-guide Optimization

The proposed optimization problem is unconstrained and
involves multiple objectives, so solving it once might not
guarantee trajectory safety. So, we iteratively solve this
problem using the re-guide strategy presented in Alg. [2| until
the entire trajectory is collision-free. From our observations,



the designed static collision and dynamic obstacle costs help
the optimizer find the collision-free trajectory, but it might
fail for the following reasons. First, the collision cost weights
in Eqn. ] are not large enough. For this scenario, Alg.

initializes the weights e and qgynamic for static and
dynamic collision cost with a user-defined cost inflate factor
A (Lines [TH2) and increase the collision cost weights if they
are too small (Lines[T2]and[T4). Second, control points might
be pushed towards new obstacles after optimization due to
the ”’push force” from cost functions. In this case, we treat
those control points as the re-guide required points as the
previous collision cost and gradient approximations become
invalid. So, Alg. 2] checks whether there exists the re-guide
required points (Line [8) in each iteration and assigns new
guide points to those control points (Line [I0). The process
will repeat until a collision-free trajectory is generated.

IV. RESULT AND DISCUSSION

To evaluate the proposed method’s performance, we con-
duct simulation experiments and physical flight tests in dy-
namic environments. The algorithm implementation is based
on C++ and ROS running on Intel i7-10750H@2.6GHz for
simulation experiments and Nvidia Xavier NX for physical
tests. The runtime for each component of our system is
shown in Fig. [5] Overall, the entire system can run in real-
time for the laptop and the UAV’s onboard computer. The
3D dynamic map contains the obstacle tracking module and
voxel mapping module, both using a small computational
cost and taking less than 20ms each iteration. The proposed
planner can run up to around 100Hz by the UAV’s onboard
computer to guarantee a fast response to dynamic obstacles.

A. Obstacle Tracking Evaluation

To quantitatively evaluate the performance of our dynamic
obstacle tracking method, we measure the errors in simu-
lation and physical experiments using the external motion
capture system (Fig. [6). The collected data is shown in Table
Ml The table results present the tracking algorithm’s mean
position, velocity, and obstacle size measurement errors. One
can observe that both errors for position and velocity are
relatively small in the simulation compared to the physical
tests. This larger errors are mainly caused by the noises from
physical depth images. The position and velocity errors in the
real world are with the mean of 0.19m and 0.21m/s, which
are reasonable considering the low computation requirement
and safe for dynamic obstacle avoidance. The obstacle size
measurement errors are acceptable, with a mean of 0.25m
for both simulation and physical tests.

TABLE I
MEASUREMENT OF DETECTION AND TRACKING ERRORS.

Errors Simulation Tests | Physical Tests
Position Error (m) 0.09 0.19
Velocity Error (m/s) 0.10 0.21
Size Error (m) 0.25 0.25
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Fig. 5. The recorded average runtime for each component of our system.
The entire system is able to run in real-time by the onboard computer.

Fig. 6. Illustration of using the OptiTrack motion capture system to estimate
the error of the proposed dynamic obstacle detection and tracking method.

B. Simulation Experiments

The simulation experiments include three dynamic en-
vironments of various static structures. Fig. [7] shows the
corridor environment with the robot avoiding obstacles. We
evaluate and benchmark the performance quantitatively using
the collision, freezing, and success rates. The freezing rate
denotes the rate of the robot failing to generate the trajectory
and being forced to stop. For each environment, we select
several target points for the robot to navigate and count the
collision, freezing, and success times. We ran the experi-
ments 20 times in the three environments (420 trajectories
in total) and obtained the results in Table [l Note that we
do not have the pre-built map for navigation, and the robot
needs to navigate through the environments with only the
given goal positions and observations from its sensor.

The state-of-the-art local planner [2] is used for perfor-
mance benchmarking. We also include our methods without
vision detection (ViGO w/o Vision) and without the receding
horizon distance field (ViGO w/o RH) to analyze the effects.
From Table [l we can see that our proposed method has
the highest total success rate. The EGO-Planner and our
approach without vision detection have similar results in
dynamic environments. From our observations, those failures
are mainly from the latency of voxel map updates for moving
obstacles, so adding vision-aided obstacle tracking to the
system can largely improve the success rate. Besides, the
performance of our method without the receding horizon
distance field is slightly worse, with a lower success rate and
higher collision rate. In the experiments, the method using
the receding horizon distance field can make the robot act
to obstacles earlier based on future predictions, which can
help improve safety. In addition, our method has a higher
freezing rate than its counterparts, which is the primary cause
of failure. This phenomenon is reasonable since we apply



Fig. 7. The corridor environment simulation. The robot (shown in the red
circle) safely navigates through the environment without a pre-built map.

the more strict constraints on dynamic obstacles, and it is
effective as it increases the success rate.

TABLE I

THE BENCHMARK OF THE COLLISION RATE, FREEZING RATE, AND
SUCCESS RATE IN THE SIMULATION EXPERIMENTS.

Methods

Collision Rate  Freezing Rate  Success Rate

EGO-Planner [2] 31.67% 2.14% 66.19%
ViGO w/o Vision 34.52% 0.95% 64.53%
ViGO w/o RH 7.14% 4.76% 88.10%
ViGO (Ours) 1.43% 5.95% 92.62%

C. Physical Flight Tests

The physical experiments are conducted to verify the
performance of the proposed method with the example target
environments shown in Fig. [I] and Fig. [§] Our customized
quadcopter (shown in Fig. [T) is equipped with an Intel Re-
alsense D435i depth camera with Nvidia Xavier NX onboard
computer. We apply the visual-inertial odometry (VIO) [27]
to estimate the robot’s position and velocity. The PX4-based
flight controller is used to control the quadcopter to track
the trajectories. The computation of all modules, including
obstacle tracking, mapping, localization, and trajectory opti-
mization, is performed onboard by the quadcopter.

An example of a physical flight experiment is shown in
Fig. [§] In the experiment, we have two persons walking
at around lm/s and trying to block the robot’s moving
directions. The robot must navigate towards the goal location
and avoid static and dynamic obstacles without a pre-built
map. From the bottom two figures, we can see that the
robot is able to detect and track the dynamic obstacles as
the blue bounding boxes and build the static map shown as
the colorful voxels. When the robot has potential collisions,
it can successfully generate the trajectory (blue curves)
to bypass static and dynamic obstacles. The robot history
trajectory is presented as the red curves. The velocity profile
of this physical flight test is shown in Fig. 9} The data are
collected using the onboard state estimation, and the maxi-
mum velocity is around 2m/s. By repeating the experiment
with different static environment structures, we verify that
our proposed methods can successfully perform navigation
and obstacle avoidance in dynamic environments.

Timestamp=2.50s

=» Camera Pose @ Dynamic Obstacle ’ Voxel Map (static) ‘ Planned Trajectory

Fig. 8.  Illustration of a physical flight test in a dynamic environment.
The side and top views from different timestamps are shown in the upper
figures, and the Rviz visualization is presented at the bottom.
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Fig. 9. The velocity profile of a physical flight test for each axis. The
velocity data are obtained using the onboard visual-inertial state estimation.

V. CONCLUSION AND FUTURE WORK

This paper presents our vision-aided gradient-based B-
spline optimization (ViGO) for navigating dynamic envi-
ronments. The proposed method utilizes the vision-aided
dynamic map to track dynamic obstacles. Our circle-based
guide point algorithm is applied to estimate the costs and
gradients for static collisions, while the receding horizon
distance field is used to calculate dynamic obstacle costs. The
proposed method follows the iterative re-guide optimization
to generate a safe trajectory for navigation and obstacle
avoidance. The simulation shows that our approach outper-
forms the state-of-the-art planner’s success rate by using
the vision obstacle tracking and receding horizon distance
field. The physical experiments prove that our system can
successfully avoid moving obstacles and run in real-time.
For future improvement, we will focus on the 3D obstacle
detection and tracking accuracy and apply multiple cameras
to increase the tracking field of view.
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